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Abstract 

We present a Mathai-Quillen interpretation of topological sigma models. The key to the con- 
struction is a natural connection in a suitable infinite-dimensional vector bundle over the space of 
maps from a Riemann surface (the world sheet) to an almost complex manifold (the target). We 
show that the covariant derivative of the section defined by the differential operator that appears in 
the equation for pseudo-holomorphic curves is precisely the linearization of the operator itself. We 
also discuss the Mathai-Quillen formalism of gauged topological sigma models. 
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1. Introduction 

The theory of pseudo-holomorphic curves has many successful applications to sym- 

plectic geometry since it was introduced by Gromov [ 1 ]. (For recent surveys, see [2] and 

references therein.) In the topological sigma model [3], one of  the several topological 

field theories proposed by Witten, functional integrals are localized to the moduli space of  

pseudo-holomorphic curves in the (exact) semi-classical limit, the correlation functions are 

Donaldson-type invariants in Gromov's  theory and the space of  quantum ground states is 

the Floer group. These phenomena, in this and other topological field theories, can be under- 
stood most naturally when the field theories are based on infinite-dimensional versions of 
the Mathai-Quillen construction [4]. (See [5] for a review.) For example, four-dimensional 

topological Yang-Mills theory [6], which is related to the works Donaldson and Floer, does 
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have a Mathai-Quillen interpretation [7]. In this paper, we present the topological sigma 
model and its gauged versions in the same spirit. 

The paper is organized as follows. In Section 2, we review the Mathai-Quillen con- 

struction and its appearance in the infinite-dimensional setting of loop spaces. Its relation 
with the BRST algebra and the Lagrangian in silpersymmetric quantum mechanics [8] will 

provide a guidance for the remaining sections. In Section 3, we consider the space of maps 
Map(~?, M) from a Riemann surface ~7 to an almost complex manifold M and an infinite- 
dimensional vector bundle E01 over Map(2?, M), whose fiber over a map u is the space of 

anti-J-linear sections of the bundle u* T M  ® T*2? over ,U. We show that there is a natural 
connection V 01 o n  E 01 . Moreover, the covariant derivative of the section u ~-~ Oju along a 

tangent vector ~/, of Map(/7, M) is the action of a first-order partial differential operator on 

q, which linearize the section itself. This provides the Mathai-Quillen interpretation of the 
topological sigma model. Section 4 is about the gauged versions. We replace the maps to 
the target space in the previous model by sections of a fibration of Riemannian manifolds. 

We find out however that the connection of the infinite-dimensional vector bundle in this 

generalized setting preserves the linear metric in the fibers only when the parallel transport 
of the finite-dimensional fibered space generates isometries among the Riemannian fibers. 

In this special case, the topological sigma model is coupled to gauge fields in the usual 

sense. 

2. Mathai-Quillen formalism and supersymmetric quantum mechanics 

We first recall the basic notion of the Mathai--Quillen construction in finite-dimensional 
settings. Consider a vector bundle E of rank m associated to a principal bundle P over a 

compact base manifold of dimension n. Let {x i } be local coordinates on M and {~a}, the 

linear coordinates on the fiber F. Choose a metric gij on M and a linear metric hab in the 
fiber to raise and lower indices. Given a connection V on E (compatible with the metric 
hab), the Euler class e(E) of the bundle E is the Pfaffian of the curvature 2-form Rab and 
can be written in terms of a fermionic integral. More generally, let p be a fermionic variable 
in F, then 

1 e -1~12/2 f dp e iV~apa+paRabpb/2 (2.1) u v ( E ) -  (2~)----- ~ 

is a basic form on P x F and can be regarded as a representative of the Thom class on 
E [4]. For any section s : M --~ E, the pull-back es,v = s*uv (E) is given by the right-hand 
side of (2.1) after replacing ~a by s a. The de Rham class of this m-form on M does not 
depend on the choice of the connection or the section, and is equal to the Euler class e(E) 
of the bundle E. If m = n, we can integrate es, v over M; this gives the Euler number X (E). 
Introducing another fermionic variable X in TM,  then 

1 f " " " x(E) = (2n.)-~- ~- (Ix dx dp e -Is(x)12/2+iVisa(x)x'p"+R'bijx'x]papb/4, (2.2) 
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which resembles the partition function of  a supersymmetric system. If m < n, we have 

to insert differential forms of  appropriate degrees in the integrand in order to get nonzero 

numbers. Physically, this amounts to the calculation of  the expectation value of  an observable 

0 = Oit...im_~ (x))f i~ . . .  X im-n. In infinite-dimensional cases, 2 the Euler class so defined 

formally may depend of  the choice of  the section [7]. Moreover, the insertion of  differential 

forms or observables is possible only when the difference n - m is finite, or when the zero 

locus of  the section is finite-dimensional. 

Now consider a case in which the base manifold is the (infinite-dimensional) loop space 

L M  = Map(S l , M) of  a compact Riemannian manifold M with metric gij and the vector 

bundle is its tangent bundle T(LM) .  A tangent vector at a loop u(t) is a section of  the 

pull-back bundle u* T M over the circle S 1 . Choosing the functional-derivative operators 

~/6u i (t) as a basis of  T(LM) ,  a tangent vector field on L M  is locally 

/ ' • = dt ~ i  (u, t) 6u i ( t) '  (2.3) 

sI 

or is simply denoted by 4~ i (u, t). L M  is equipped with an induced metric 

( 6 6 ) = g i j ( u ( t ) ) 6 ( s - - t ) .  (2.4) 
g 6u-(s) '  6u-f (t) 

So the Christoffel symbols and the Riemann curvature of  L M  are equal to those of  M up to 

factors of  delta functions. For example, the covariant derivative of  a vector field q~i (U, l) is 

V~/~ui~s)~k(u't) = 3~k(u't)Su i(s) + Fi~(u(t))6(s - t ) ~ J ( u , t ) .  (2.5) 

For each Morse function W on M, there is a natural tangent vector field ti + grad W on 
L M, whose components are du i ( t ) / dt + W ,i (u(t ) ). The covariant derivative of  ti along a 

base vector is 

du k (t) [ - 6 p  d k du j (t) ] 
V~/~uifs) dt - _ -~s + Fij dt J 6(s t). (2.6) I 

Hence for any tangent vector • of  L M, 

•4,[tik(t) -t-- w'k(u(t))]  : OtdP k -b dpiw'k;i, (2.7) 

where Dt ~k  : ~k  -t- Fi~a i • j is the covariant derivative given by the pull-back connection 

in u*T M. 
We now compare the Mathai-Quillen formalism of T (L M) with supersymmetric quan- 

tum mechanics, of  which the fundamental variables are a bosonic loop u i (t), two fermionic 
fields lp i (t) and l~ i (t) in the tangent space, and a (bosonic) multiplier field ni (t), with ghost 

numbers 0, 1, - 1 ,  0, respectively. The BRST algebra is (see for example [ 10,5]) 

2 A systematic treatment of the notions of manifold, connection and curvature in infinite-dimensional 
settings can be found in [9]. 
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8~t i : e i - i Fik~tkl[rJ, 

8Bi = i l]~. B k ~  j -- ½ RJ ikl(pj~k~t I. 

The Lagrangian is 

: 8(~i (u  i + W ,i) _ ½~igiJBj) 

= - ½ B I B  i + Bi(f~ i + W "i) _ i ~ i ( D t ~  i + ~ J w ' i ; j )  + 1RiJkl(Pi(pj~k~pl. 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

After eliminating Bi using the equation of motion B i = ui + w, i ,  we have 

1 . i  ft .-- ~gij(U + w'i)( t~ j + W ' j )  - i~[ti(Dt~ ti + l P J w ' i ; j )  

+ ~ eiJ kl~fi~jlpk ~t I. (2.12) 

Both the BRST algebra and the Lagrangian are related to the Mathai--Quillen formalism 
of T ( L M ) .  First, the noncovariant looking terms in (2.9) and (2.10) are determined by 
the term in (2.6) proportional to duJ( t ) /d t ,  which is replaced by ~J. 82~ = 0 requires 
that the additional term in (2.10) is proportional to V2/~, i.e., the curvature of the infinite- 
dimensional bundle. That 82Bi -~ 0 is guaranteed by the (differential) Bianchi identity. 
Secondly, in light of (2.7), the action fs~ dt £ agrees completely with the exponent in (2.2) 
with the section s = u + grad W and with u(t),  q~(t) and ~(t)  playing the role of x, X, P, 
respectively. Hence the partition function 

Z : f DuD~D(O e - f  dt ~(u,~,(o) (2.13) 

is formally the Euler characteristic of L M  regularized by the section u + grad W. 

Let Fu be the differential operator acting on q~ on the right-hand side of (2.7), i.e., 
Fu ¢~ = Dt q~ + V~ (grad W). Mathematically, the above Mathai--Quillen interpretation is 
based on two facts. First Fuq~ = 0 is precisely the linearization of the instanton equation 

ti + grad W(u)  = 0. (2.14) 

Secondly, due to the BRST algebra defined above, the same linearization also appears as the 
fermionic kinetic term in the Lagrangian (2.12). Furthermore, Fu determines the dimension 
of the space of solutions of (2.14). If u is a map from R to M satisfying 

lira u(t)  = y, lira u(t)  = x, (2.15) 
t---~--O0 t---¢'+O0 

where x and y are two (isolated) critical points of W with Morse indices ind(x) and ind(y) 
respectively, then F,, is a Fredholm operator whose index is (see for example [11]) 

ind(Fu) = ind(y) - ind(x). (2.16) 

Let A4 (y, x) be the space of solutions of (2.14) satisfying (2.15). For a generic metric gij 
(such that the gradient flow of W is of Morse-Smale type), Fu is onto and hence ind(Fu) 
is equal to the dimension of A4(y, x). 



S. Wu/Journal of Geometry and Physics 17 (1995) 299-309 

3. M at ha i - Qumen  interpretation of  the topological sigma model 

303 

Topological sigma model is an analog of supersymmetric quantum mechanics in a more 
complicated situation. Instead of the loop space, we start with the space Map(E,  M) of 
maps from a Riemann surface 27 (with complex structure e) to a symplectic manifold 
(M, o9) with a compatible almost complex structure J .  3 Let g be the induced Riemannian 
metric on M. A natural generalization of the section u ~ li when 27 = S 1 is u ~ du, 

which is not a tangent vector of Map(27, M). For each u e Map(27, M), du can be regarded 

as a section of the bundle u*TM ® T'27 over 27. So u ~ du is a section of a vector 
bundle C --~ Map(27, M) whose fiber over u is £u = F ( u * T M  ® T'27). Choosing local 
coordinates {or a } of 27 and {x i } of M, a local basis of T(Map(27, M)) is {8/~Sui(or)}. A 
tangent field on Map(27, M) has the form similar to (2.3): 

• 
@ = f d2or @~(u, tr)Sui(tr).  (3.1) 

z 

A section of C is 

= o r ) ~  ® dor a, (3.2) 

/7 

or simply denoted by its components g' /(u,  or). The bundle £ has a natural connection. 

Consider the evaluation map ev : Map(27, M) x 2? ~ M. Let ~rl and 7r2 be the canonical 
projections of Map(27, M) x 27 onto Map(27, M) and 27, respectively. A section of E can be 
canonically identified with one of ev* T M ® ~r~ T* 27, i.e., F (£) ~ F (ev* T M ® ~r~ T* 27). 
In fact, the bundle C is the push-forward of ev*TM ® ~r~T*27 via 7rl. The Levi-Civita 

connection on T M  pulls back to ev*TM. Choosing a metric hal on 27 compatible with the 
complex structure e, T27 (hence T'27) has a Levi-Civita connection, which pulls back to 

rr~T*27. Thus we have a connection on ev*TM ® rr~T*27 by taking the tensor product. 
Finally, the connection on E is obtained by restricting the covariant derivative to the tangent 

directions of Map(27, M) in the base manifold. A simple calculation shows 

k ~ I//k (U, or ) ~ (2) (or 
VS/~ui(r)q/~(u, or)--  8ui(r)  +C~(u(or ) )  - r ) q / d ( u ,  or), (3.3) 

which is independent of the metric ha# on 27. After calculations similar to those to obtain 
(2.6) and (2.7), we find that the covariant derivative of the section u ~-* du along @ is 

V@~aui(or) = Da@i(or), (3.4) 

where Da@ k = Oa@ k + ["ik oal4i (1) j is given by the pull-back connection on u*T M. 
The problem with the bundle E in the Mathai--Quillen construction is that the rank of 

E is greater than the dimension of Map(27, M) by an infinite amount. More precisely, the 

3 The symplectic structure however is not important in the construction of the Lagrangian [3] or in the 
Mathai-Quillen interpretation. 
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linearization d : F ( u * T M )  --* F ( u * T M  ® T*~,) of  the section u ~-* du is not a Fredholm 
operator. This is resolved by restricting Cu to its anti-holomorphic part E °l = F ( ( u * T M  ® 

T* E )  °l), i.e., the space of  sections if' satisfying the "anti-J-l inearity" constraint 

= _ j i  (3.5) 

The sub-bundle g01 of  £ has a connection V °l obtained by projection, i.e., 

w0llpk(u, t r ) =  ½(Vtpk(u, t r ) +  e c ~ # j k j v ~ ( u ,  tr)). (3.6) 

In £01, there is a natural section u ~ 0 ju  = ½(du + J o d u o  e), or Oau i = ½(Oau i + 
Ecl : j i j o # u J ) .  Solutions to the equation 0 ju  = 0 are called pseudo-holomorphic (or J -  
holomorphic) curves in M [1]. The covariant derivative of  the section u ~-* 0 ju  along a 

tangent vector ¢, at u ~ M a p ( E ,  M) is, taking into account the variation of the almost 

complex structure J ,  

V 0100tU k -:- ½(Da~ k + ea ~JkiD~(l~i) a t- Ijki;jc~J(Ect ~O#u i a t- JilOotul). (3.7) 

In a coordinate-free language, for every ¢~ ~ F(u* T M ) ,  

VOI(0j) = ½(D~ + J o D ~  o ~) + 1 D ¢ j  o (duo  ~ + J o d u )  

F ( ( u * T M  ® T ' E ) ° 1 ) .  (3.8) 

If  the target manifold M is K~ihler, the complex structure J is covariantly constant, i.e., 

Jki;j : 0 o r  V ¢ , J  : 0. So the second term in (3.7) or (3.8) proportional to the covariant 
derivative of  J drops out. 

With this explicit expression, we can interpret the BRST algebra and the Lagrangian of the 
topological sigma model in [3]. 4 The fields consist of  a (bosonic) map u ~ M a p ( E ,  M), 

two fermionic fields X 6 F ( u * T M ) ,  p ~ F ( ( u * T M  ® T*E)° I ) ,  and a bosonic field 
H,  a section in the same bundle as p. So the fields p /  and H / obey the same "ant i -J-  

linearity, constraint (3.5). At the classical level, there is a bosonic symmetry with charges 
U = 0, 1, - 1, 0 on u, X, P, H ,  respectively, corresponding to the grading of differential 
forms on the moduli space. The BRST supersymmetry is 

¢$U i : i x  i , tS X i = O, (3.9) 

t~poti : Hal _ t ( f f  ijt~c k ~0 _]_ ½etj ~ Jki;j)P#kXJ, (3.10) 

<$Hcti : l(l"ijSet" k ~ + ½~et~ jki;j)Hl~kXj 

-- l (Rlijk + Rmnjk JlmJni + Jlm;j jmi;k)PodxJ xk.  (3.11) 

The terms proportional to  X i in (3.10) and (3.11) correspond to those in (3.7) that are 
proportional to duJ, Since 82p = O, the remaining terms in (3.11) give the curvature R of 
the bundle gol.  The Lagrangian can be chosen as £ ~ i 1 i = 8(p i (O,u - ~ H~)). After eliminating 
H / using the equation of  motion H~ = Oau i + e .  #jijOfluJ, we get 

4 In [10], it was realized that this Lagrangian can be obtained by gauge fixing a topological action. 
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= ½gijOctuiOCtu j + ½Ect~Jij~otuiOfluJ -- i#.~(D~x i + ½Ea fl j i j;kxkOfl ,J)  

'" l ~ i  . j m  . ot k l +l(g ' Jk l  + ~d m;k d ;I)PotiP) Z Z . (3.12) 

This is symbolically 

Z2 ~ ½1~ul 2 - iPVx(0 ) + ¼T~XZpp , (3.13) 

which agrees with the exponent of (2.2). Again, if M is a Kahler manifold, the BRST algebra 

and the Lagrangian are simplified due to the vanishing of the covariant derivatives of J ,  
i.e., Jki; j = O. 

Similar to Section 2, Mathai-Quillen interpretation here is based on the result that the 
partial differential operator acting on q~ on the right-hand side of (3.7) or (3.8) is the 

linearization of the section u ~-~ 0ju; this linearization again appears in the Lagrangian 

(3.12). Let .A4 be a connected component of the moduli space of pseudo-holomorphic 
curves (~ j ) - I  (0). For a generic almost complex structure J ,  the linearization of 0s is onto; 
its index is equal to the dimension of .A4. Applying Riemann-Roch theorem, we have [ 1 ] 

dim .A4 = (1 - g) dim M + 2Cl (u*TM).  (3.14) 

To study the canonical formalism and Floer homology, take 27 = R × S 1 with coordinate 

a = t +is .  T'27 has two global sections ds and dt satisfying ds oe = dt and dt oe = - d s .  
A section q' of £0t is of the form 

qJ = ½!/q ® dt - ½J~l  @ ds, (3.151) 

where qJl is a tangent vector field of Map(27, M). In other words, £01 and T (Map(27, M)) 

are isomorphic as bundles (though equipped with different connections). The section 0ju, 
for example, corresponds to the tangent vector 

• OU i OU i 
(bju)'  I = ~ + J(u)  0---~ (3.16) 

Naturally, (3.16) = 0 is the (nonlinear) Canchy-Riemann equation for pseudo-holomorphic 

curves. One can introduce the analogue of the Morse potential in Section 2. Let H : M × 

S I ~ R be a (time-dependent) Hamiltonian function on the symplectic manifold M. Pulling 
back via the evaluation map, the gradient of H can be regarded as a tangent vector field 
of Map(27, M), still denoted by grad H. According to the above discussion, the tangent 
vector 

Ou Ou 
0 t  + J~-s + grad H(u,  s) (3.17) 

defines a section of C °1. A direct calculation shows that the action of the covariant derivative 
V °l on (3.17) is 

l ( au Ou ) 
D t ~  + J D s ~  + V~ gradH + ~Vq, J J -~-  + ~-s + Jg rad  H . (3.18) 

In fact (3.17) = 0 is the gradient flow of a Morse function on L M  whose critical points 
are periodic trajectories under the (time-dependent) Hamiltonian flow of H,  under certain 
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topological assumptions on M and its symplectic form to. If  u(s, t) does satisfies (3.17) = 0, 
then (3.18) reduces to 

Ou 
DtrP + JDs@ + V~grad H + V ~ J  o - - .  (3.19) 

Ot 

Here again, (3.19) is the linearization of  (3.17). The index of  the operator in (3.19) can be 

used to associate a grading on the set of  periodic trajectories of  the Hamiltonian flow [12] 

(see also [11]). The resulting Floer homology group is useful in solving the Arnold conjec- 

ture [13]. 

4. Gauged topological sigma models 

In this section, we study the geometry of  fibered Riemannian manifolds and discuss the 

corresponding Mathai-Quillen construction and the topological sigma model coupled to 

this geometric background, which includes an important special case of  coupling to gauge 

fields. 

Let X ---> /7 be a smooth fibration such that each fiber is diffeomorphic to a manifold M 

and is equipped with a (fiber-dependent) Riemannian metric g. Under a local trivialization, 

X can be described by the coordinates {tr a } o f / 7  and {x i} of M, and {0a, ai} is a basis 

of  the TX. The relative tangent bundle T(X//7)  of this fibration is a vector bundle over 

X whose fiber at each point is the tangent space to the fiber, i.e., spanned by {ai}. The 

Levi-Civita connection on the fiber defines the parallel transport of  vertical vectors along 

the vertical directions. We choose a splitting of  TX into T(X/T,)  and horizontal subspaces. 

Under an arbitrary local trivialization, a,~ is not necessarily a horizontal vector. Let fiaOi 
be its vertical component, then its horizontal component is 0,~ ----- 0a - fiaoi. This splitting 

defines a connection of  T(X//7) ,  for it determines the parallel transport of  points, and hence 

curves in the fibers along horizontal directions in X, and by differentiating, we know how to 

parallel transport vertical vectors along horizontal directions. Using the above coordinates, 

va~aj ; the covariant derivative is VbO j = f~,jOi or = . f~;jOi So the Christoffel symbols 

F~j = f i ; j .  In a coordinate-free language, if H is the horizontal lift of  a vector field on I7 
and V is a vertical vector field on X, then Vt /V = [H, V]. 

A section u : /7 ~ X is locally represented by a ~ ~ (a ~', ui(cr)). We define the 
covariant differential Vu of  u as the projection of  du = d~r ~ ® O,~ + O,~u i dee ct ® Oi onto 
the vertical directions, i.e., Vu = (O,~u i + f i )  dcr~ ® Oi. The tangent space of  the space 

of  sections F( /7 ,  X) at u is F(u*T(X//7)) .  Clearly, u ~ Vu is a section of  the bundle 

C -*  F(,U, X), with Cu = F(u*T(X/Z, )  ® T*/7). An arbitrary section of  C locally 
has the same form as (3.2) and can be identified with one ofev*T(X/IT)  ® rr~T*~ over 

F( /7 ,  X) x ZT. Here ev : F ( /7 ,  X) x / 7  -+ X is the evaluation map and 71" 2 is the projection 
of  F( /7 ,  X) x ,U onto /7. Taking the tensor product of  the pull-back connections from 
T(X/I?)  and T*/7, we get a connection on E, which locally is still given by (3.3). Assume 
that /7  is a Riemann surface with complex structure e and that there is an almost complex 
structure on each fiber of  X, i.e., a section J of  End(T(X//7)) such that j 2  = - 1 .  We 
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restrict the bundle g to its anti-holomorphic part, i.e., g °l = F((u*T(X/27) ® T*,U) °l ), 

the space of sections satisfying (3.5). The sub-bundle g °l has a connection V °l defined 
by projection (3.6). The natural section o f g  °l is u w-~ Vju = ½(Vu + J o Vu o e), or 

~7au i = ½ [(0~u i + f i )  + ea ~ j i j  (O#uJ + f;)] .  Along any tangent vector • E Tu F(,U, X), 

the covariant derivative V °1 (V j )  is formally given by the same formula (3.7) or (3.8), hut 
Du@k = oa@k + ( Fik o~ui + fk  j)q~j is the pull-back connection on u*T (X / 27). 

Consider the topological sigma model coupled to this nondynamical fibration X ~ 2? 
as background, with u 6 F(27, X), X 6 F ( u * T ( X / E ) )  and p, H ~ F((u*T(X/~ , )  ® 
T*~7)°l). They have the same statistics and the charge U as before. Moreover, the BRST 
algebra stays the same. (The terms in V °1 (~'j) proportional to O~u i do not change.) But the 
Lagrangian is replaced by 

ff~ t$(pa(V~U i 1 i = - ~ H~)). (4.1) 

After using the equation of motion H i = V~u i + e~ ~ji jVfluJ,  ff~ has the same form as 
(3.12), except that Oau i is replaced by V,~u i and that D~ is the covariant derivative on 
u*T(X/27). So this sigma model coupled to the geometry of the fibration is topological 
in the sense that the Lagrangian is obtained by gauge-fixing the trivial,action, and that the 
stationary phase approximation in the path integral is exact. However, the Mathai-Quillen 
interpretation works in the conventional sense only when the connection V °l in g °l is 
metric-preserving. This would require that the connection V in T ( X / E )  is so, a statement 
not necessarily true. However, there is another natural connection on T (X/Z;) that appeared 
in family index theorem [14,15] and topological gravity [16]. 

Recall that each fiber is equipped with a metric gij and that we have chosen horizontal 
subspaces at each point (locally characterized by f~). Together with a metric hat~ on 27, we 
can construct a metric 

( gij gijf; 
= \ f~g i j  hal + f~f~gij/i j (4.2) 

on X such that the splitting of T X into vertical and horizontal subspaces is orthogonal under 
~. The projection of the Levi-Civita connection V on X onto the vertical directions defines 
a connection V' of T(X/2?). In terms of Christoffel symbols, this connection is given by 

- t ~ k  F/~k = ~/k + F/j f~ (4.3) 

and 

F ~  =/~'~ + / ~ :  f~. (4.4) 

Along the vertical directions, ~) agrees with the Levi-Civita connection on the fiber, i.e., 
F/~ = Fi~. A more or less lengthy calculation shows that 

1 k i .  L . F~; = f k . .~_ ~g [ ~ag)ij ,  (4.5) o~;j 

where 

(L~,g)ij = gila - (f~,igkj + fka,jgik -F f~gij,k) (4.6) 
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is the Lie derivative of gij with r e s p e c t  to  the horizontal vector 0~. (Here and after, the 

indices i, j ,  k . . . .  are raised by the i n v e r s e  gi j  ofgij ,  not by gi j  : gij q_ fif~hC~#. ) Taking 

into account Fij  = f i j ,  (4.5) agrees with the coordinate-free expressions in [15]. 5 

We now compare two connections V and V' on T(X/27) .  Both of them are independent 
of the metric h~# on 27 and both are equal to the Levi-Civita connection of the fiber along 
vertical directions. The connection V' is metric preserving, but V is not in general. In fact 

F : ;  -- I ~k = ½gki(L~g)i  j .  (4.7) 

So W = V if and only if L ~ g  = 0, that is, when the parallel transport generates isometries 
among the fibers. This turns out to be a very important case. In general, the fibration ~r : 

X --~ 27 is an associated bundle of a principal Diff(M)-bundle. Over each point cf ~ ~7, 
the fiber of this principal bundle is Diff(M, ~r -1 (t~)), with the right action of Diff(M) by 

composition. The connection of the principal bundle is defined by composing the maps in 

Diff(M, ~r-l(t~)) with the parallel transport between the fibers. When L u g  = 0 for any 
horizontally lifted vector field H, the holonomy around any loop in 27 lies in the (finite- 
dimensional) compact Lie group G of isometries of M. So the structure group can be 

reduced to G and X is an associated bundle of a principal G-bundle P, i.e., X = P x G M. 
If  we start with a principal G-bundle P and assume that G acts on M preserving the 

metric g and the almost complex structure J ,  then the associated bundle X = P x G M 

is a fibration of Riemannian manifolds with almost complex structures on the fibers. A 
connection on P, locally given by the gauge potential A~ on 27, defines the horizontal 

subspaces in TX.  Let Va, a = 1 . . . . .  dim G, be the Killing vector fields on M induced by 
the Lie algebra action, then under the induced local product structure of X, f~/ = A~v~a i 
and Oa = O~ - AaVa. The Lie derivatives La~g and Lagvag = AaLVog are separately 
zero, henceL~ g = O. The Lagrangian is (3.12) with Oau i replacedby Vau i = O~u i + A a V  a a  i 

k vet 
and Dug = Oag k + (FikOau i + A a V k ~ In this case, the connection V °t defined in the a a ; j ' "  

infinite-dimensional vector bundle £0] is metric-preserving. 

The BRST invariant observables are constructed from the G-equivariant differential forms 
on M [3]. (The latter is related to the differential forms on the symplectic quotient via the 
Kirwan map.) Each equivariant form on M can be extended to a form on X, pulled back 

to F(27, X) x 27, integrated along a homology cycle in 27, and restricted to the moduli 
space M in F(27, X). It would be interesting to relate the intersection ring of M to the 
cohomology ring of the symplectic quotient. 
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5 In [14], it was shown that if there is a hermitian connection in a vector bundle over X, the induced 
connection in the (infinite-dimensional) push-forward bundle over ~ is not necessarily so. However it could 
be made bermitian by adding a term similar to the fight-hand side of  (4.7) below. 
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